Definition relative Güte

This commit is contained in:
Marco Ammon 2020-10-14 11:14:27 +02:00
parent 38911033ee
commit f868db6427
2 changed files with 67 additions and 6 deletions

Binary file not shown.

View File

@ -51,7 +51,7 @@
\tableofcontents
\clearpage
\section{Kombinatorisches Optimierungsproblem $\phi$}
\section{Kombinatorisches Optimierungsproblem $\Pi$}
\subsection{Definition}
\begin{align*}
\mathcal{D} &= \text{Menge der Eingaben $I$}\\
@ -59,10 +59,10 @@
f: \mathcal{S}(I) \mapsto \mathbb{N}^{\neq 0} &= \text{Bewertungs-/Kosten-/Maßfunction}\\
\mathrm{ziel} \in \{\min, \max\}
\end{align*}
\begin{itemize}
\begin{enumerate}
\item Beschränkung auf natürliche Zahlen, weil Vergleich reeller Zahlen bislang nicht beweisbar schnell funktioniert.
\item Ausschluss der 0 für spätere Definitionen sinnvoll (lässt sich durch Modifikation von $f$ in der Regel trivial erreichen)
\end{itemize}
\end{enumerate}
Gesucht ist zu $I \in \mathcal{D}$ eine zulässige Lösung $\sigma_\mathrm{opt} \in \mathcal{S}(I)$, sodass
\begin{equation*}
@ -77,7 +77,7 @@ Für Eingabe $I \in \mathcal{D}$ berechnet $A$ in Zeit $t(\abs{I})$ eine Ausgabe
\section{Konstante Gütegarantie}
\subsection{Definition}
\begin{itemize}
\begin{enumerate}
\item $A$ hat bei Eingabe $I$ absolute Güte von
\begin{equation*}
\kappa_A(I) = \abs{A(I) - \opt(I)}
@ -88,7 +88,7 @@ Für Eingabe $I \in \mathcal{D}$ berechnet $A$ in Zeit $t(\abs{I})$ eine Ausgabe
\end{equation*}
\item $A$ garantiert eine absolute Güte von $\kappa_A: \mathbb{N} \mapsto \mathbb{N}$, falls für alle $n \in \mathbb{N}$ gilt:
\begin{equation*}
\kappa_A^{\mathrm{wc}} \le \kappa_A(n)
\kappa_A^{\mathrm{wc}}(n) \le \kappa_A(n)
\end{equation*}
\item $A$ hat eine absolute Abweichung von $\kappa'_A: \mathbb{N} \mapsto \mathbb{N}$, falls für unendlich viele $n$ gilt
\begin{equation*}
@ -98,7 +98,7 @@ Für Eingabe $I \in \mathcal{D}$ berechnet $A$ in Zeit $t(\abs{I})$ eine Ausgabe
\begin{equation*}
\kappa_A(I) \ge \kappa'_A(\abs{I})
\end{equation*}
\end{itemize}
\end{enumerate}
\subsection{Unmöglichkeitsergebnis für das Rucksackproblem}
\begin{satz}
@ -173,4 +173,65 @@ f(c_\mathrm{E}) &= \abs{c_\mathrm{E}(E)}\\
Die Größe der kleinsten möglichen Kantenfärbung ist der chromatische Index $\chi'(G)$.
\subsubsection{Algorithmen}
TODO: Übung
\section{Relative Gütegarantie}
\subsection{Definition}
\begin{enumerate}
\item $A$ hat bei Eingabe $I$ eine relative Güte von
\begin{equation*}
\rho_A(I) = \max\left\{\frac{A(I)}{\opt(I)}, \frac{\opt(I)}{A(i)}\right\} \ge 1
\end{equation*}
\item Die relative worst-case-Güte von $A$ ist die Funktion
\begin{equation*}
\rho_A^\mathrm{wc}(n) = \max\left\{\rho_A(I)\mid I \in \mathcal{D}, \abs{i}\le n\right\}
\end{equation*}
\item $A$ garantiert eine relative Güte von $\rho_A : \mathbb{N} \mapsto \mathbb{N}$, falls für alle $n \in \mathbb{N}$ gilt
\begin{equation*}
\rho_A^{\mathrm{wc}}(n) \le \rho_A(n)
\end{equation*}
\item $A$ macht für die Eingabe $I \in \mathcal{D}$ einen relativen Fehler von
\begin{equation*}
\varepsilon_A(I) = \frac{\abs{A(I) - \opt(I)}}{\opt(I)} = \abs{\frac{A(I)}{\opt(I)} - 1}
\end{equation*}
\item $A$ garantiert einen relativen Fehler von $\varepsilon_A(n)$, falls für alle $\{I\mid I \in \mathcal{D}, \abs{I}\le n\}$ gilt
\begin{equation*}
\varepsilon_A(I) \le \varepsilon_A(n)
\end{equation*}
\item $A$ hat eine relative Abweichung von $\rho'_A : \mathbb{N} \mapsto \mathbb{N}$, falls für unendlich viele $n$ gilt
\begin{equation*}
\rho_A^\mathrm{wc}(n) \ge \rho'_A(n)
\end{equation*}
Eine unendlich große Menge $\mathcal{D}' \subseteq \mathcal{D}$ heißt $\rho'_A(n)$-Zeugenmenge gegen $A$, wenn für alle $I \in \mathcal{D}'$ gilt
\begin{equation*}
\rho_A(I) \ge \rho'_A(\abs{I})
\end{equation*}
\end{enumerate}
Es folgen daraus direkt, dass
\begin{enumerate}
\item bei einem Minimierungsproblem $1 + \varepsilon_A(n) = \rho_A(n)$ ist.
\item bei einem Maximierungsproblem $1 - \varepsilon_A(n) = \frac{1}{\rho_A(n)}$ ist.
\item für alle Probleme $\varepsilon_A(n) \le \rho_A(n) - 1$ ist.
\end{enumerate}
Weiter lassen sich damit obere bzw. untere Schranken der Optimallösung aus einer approximierten Lösung angeben. Es folgt, dass
\begin{enumerate}
\item bei einem Minimierungsproblem gilt
\begin{equation*}
\frac{1}{\rho_A(\abs{I})} \cdot A(I) \le \opt(I) \le A(I) \le \rho_A(\abs{I})\cdot \opt(I)
\end{equation*}
\item bei einem Maximierungsproblem gilt
\begin{equation*}
\frac{1}{\rho_A(\abs{I})} \cdot \opt(I) \le A(I) \le \opt(I) \le \rho_A(\abs{I}) \cdot A(I)
\end{equation*}
\item bei beiden Problemtypen mit der Beziehung
\begin{equation*}
\abs{A(I) - \opt(I)} \le \varepsilon_A(\abs{I}) \cdot \opt(I)
\end{equation*}
gilt
\begin{equation*}
(1 - \varepsilon_A(\abs{I})) \cdot \opt(I) \le A(I) \le (1 + \varepsilon_A(\abs{I})) \cdot \opt(I)
\end{equation*}
\end{enumerate}
\end{document}