Definitionen aus Übung
This commit is contained in:
parent
18acfc5469
commit
34cca3fd19
BIN
merkzettel.pdf
BIN
merkzettel.pdf
Binary file not shown.
|
@ -72,6 +72,7 @@ Wir definieren $A \subseteq \mathbb{N}$ und für jede $n$-stellige Operation $f$
|
|||
\begin{equation*}
|
||||
\lambda x.yx \ered y
|
||||
\end{equation*}
|
||||
\item \textbf{TODO} $\alpha$-Äquivalenz
|
||||
\end{itemize}
|
||||
\subsubsection*{Auswertungsstrategien}
|
||||
\begin{itemize}
|
||||
|
@ -363,4 +364,69 @@ f_1 \times f_2 &= \langle f_1 \circ\pi_1, f_2\circ\pi_2\rangle\\
|
|||
S\lbrack E/x\rbrack \cup \lbrace x \pteq E\rbrace (\text{für }x\notin FV(E), x\in FV(S))
|
||||
\end{cases*} && \text{ (occurs)/(elim)}
|
||||
\end{align*}
|
||||
\section*{Notation}
|
||||
\begin{itemize}
|
||||
\item Applikation ist links-assoziativ: $((x(yz))u)v = x(yz)uv$
|
||||
\item Abstraktion reicht so weit wie möglich: $\lambda x.(x(\lambda y.(yx))) = \lambda x.x(\lambda y.yx)$
|
||||
\item Aufeinanderfolgende Abstraktionen werden zusammengefasst: $\lambda x.\lambda y.\lambda z.yx = \lambda xyz.yz$
|
||||
\end{itemize}
|
||||
\section*{Definitionen aus der Übung}
|
||||
\begin{align*}
|
||||
flip\ &= \lambda f\ x\ y.f\ y\ x\\
|
||||
const\ &= \lambda x\ y.x\\
|
||||
twice\ &= \lambda f\ x.f\ (f\ x)
|
||||
\end{align*}
|
||||
\subsection*{Church-Kodierung}
|
||||
\begin{align*}
|
||||
true\ &= \lambda x\ y.x\\
|
||||
false\ &= \lambda x\ y.y\\
|
||||
if\_then\_else\ &= \lambda b\ x\ y.b\ x\ y
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
pair\ a\ b\ &= \lambda select.select\ a\ b\\
|
||||
fst\ p\ &= p\ (\lambda x\ y.x)\\
|
||||
snd\ p\ &= p\ (\lambda x\ y.y)\\
|
||||
swap\ p\ &= p\ (\lambda x\ y\ select.select\ y\ x)
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
zero\ &= \lambda f\ a.a\\
|
||||
succ\ n\ &= \lambda f\ a. f\ (n\ f\ a)\\
|
||||
add\ n\ m\ &= \lambda f\ a. n\ f\ (m\ f\ a) = n\ succ\ m\\
|
||||
mult\ n\ m\ &= \lambda f\ a.n\ (m\ f)\ a = n\ (add\ m)\ 0\\
|
||||
isZero\ n &= n\ (\lambda x.false)\ true\\
|
||||
odd\ n\ & if\ (n == 0)\ then\ true\ else\ (not\ (odd\ n-\lceil 1\rceil ))
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
length\ Nil\ &= 0\\
|
||||
length\ (Cons\ x\ xs)\ &= 1 + length(xs)
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
snoc\ Nil\ x\ &= Cons\ x\ Nil\\
|
||||
snoc\ (Cons\ x\ xs)\ y\ &= Cons\ x\ (snoc\ xs\ y)
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
reverse\ Nil\ &= Nil\\
|
||||
reverse\ (Cons\ x\ xs)\ &= snoc\ reverse(xs)\ x
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
drop\ y\ Nil\ = Nil\\
|
||||
drop\ y\ (Cons\ x\ xs) &= \begin{cases*}
|
||||
drop\ y\ xs\ \text{, falls } y=x\\
|
||||
Cons\ x\ (drop\ y\ xs)\ \text{, sonst}
|
||||
\end{cases*}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
elem\ y\ Nil\ &= False\\
|
||||
elem\ y\ (Cons\ x\ xs) &= \begin{cases*}
|
||||
True\ \text{, falls x=y}\\
|
||||
elem\ y\ xs\ \text{, sonst}
|
||||
\end{cases*}
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
minimum\ Nil\ &= 0\\
|
||||
minimum\ (Cons\ x\ xs)\ &= \begin{cases*}
|
||||
x\ \text{, falls $minimum\ xs$ = 0}\\
|
||||
min\ x\ (minimum\ xs)\ \text{, sonst}
|
||||
\end{cases*}
|
||||
\end{align*}
|
||||
\end{document}
|
Loading…
Reference in New Issue